在植物生命科學領域,有一個懸而未決的世界難題——“單個體細胞如何發育成完整植株”,這一問題早在2005年就被國際著名學術期刊《科學》(Science)在其創刊125周年時,列為最具挑戰的125個關鍵科學問題之一。近日,這道世紀之問終于迎來了來自中國科學家的答案。
山東農業大學張憲省教授和蘇英華教授研究團隊首次完整揭示了單個植物體細胞如何通過基因重編程“改變命運”,最終發育為完整植株的全過程。該成果不僅破解了困擾科學界百余年的“植物細胞全能性”機制之謎,也為作物遺傳改良與高效再生提供了全新理論支撐。9月16日,這一成果在國際著名學術期刊《細胞》(Cell)在線發表。

研究團隊應用掃描電鏡及激光共聚焦活體成像等技術,首次捕捉到單個植物細胞的分裂全過程:從1個細胞分裂為2個,再以“3個一組”的特殊模式逐步形成12個細胞的胚體,直觀證實了植物細胞全能性的“單細胞起源”,有力回答了學術界長期存在的疑惑。
團隊通過深入研究,找到了觸發細胞全能性的“關鍵鑰匙”:葉片氣孔前體細胞特有的基因SPCH,與人工誘導高表達的基因LEC2,二者協同作用形成“分子開關”。“就像轉動一把鎖需要兩把鑰匙,缺一不可。”張憲省教授形象比喻。
利用先進的單細胞測序、顯微切割轉錄組測序與活體成像等前沿技術,團隊完整記錄了細胞命運重塑的完整路徑,揭示了關鍵的命運分岔點:一條路徑是氣孔前體細胞繼續分化為氣孔;另一條路徑是在大量合成內源生長素的推動下,單個體細胞被重編程為全能干細胞,走上胚胎發育之路。
研究人員將這一關鍵過渡狀態命名為“GMC-auxin”中間態。在這一狀態下,細胞發生了深度的染色質重塑,大量沉默的基因被逐步激活,細胞命運軌跡由此產生分岔,為全能性的建立打開了大門。進一步的實驗表明,阻斷細胞內源生長素合成會使這一重編程過程完全停滯,體細胞胚胎無法形成;而單純添加外源激素也無法替代這一過程,說明只有細胞自主合成并積累的生長素信號,才能真正觸發全能性的開啟。
更為重要的是,該研究在世界上首次全面解析了單個植物體細胞重編程形成全能干細胞并再生完整植株的分子機理:在GMC-auxin中間態下,大量轉錄因子形成高度耦合的調控網絡,進而激活下游的胚胎發生程序。
《Cell》雜志審稿人認為,該研究揭示的GMC-auxin中間態是“令人興奮的突破”,首次定義了氣孔前體細胞向全能干細胞轉變的分子路徑,原創性強,意義重大,為理解植物體細胞發育命運改變和再生潛能提供了強有力的科學支撐。
這一理論的解析不僅有助于理解植物細胞發育的根本規律,也為精準調控植物再生和定向改良作物性狀提供了全新的思路與技術工具。
目前,該體系在小麥、玉米和大豆等作物的實驗正同步推進。“未來或可通過精準調控細胞全能性,實現作物優良品種的‘快速克隆’,大幅度縮短育種周期,服務精準設計育種。”張憲省教授表示,“這也將為珍稀植物種質資源的高效保護、植物合成生物學注入新動力”。
山東農業大學為論文第一完成單位,張憲省教授、蘇英華教授和荷蘭拉德堡德大學的須健教授以及北京華大生命科學研究院夏科科副研究員為共同通訊作者。山東農業大學唐麗蘋副教授、翟立明博士、北京華大生命科學研究院李紀明博士、山東農業大學高月博士生為共同第一作者。該研究得到了國家自然科學基金重點項目、面上項目、山東省自然科學基金重大項目、荷蘭拉德堡德大學生物與環境科學研究所的啟動基金、國家重點研發計劃以及深圳市科技計劃的資助。
論文鏈接:
https://doi.org/10.1016/j.cell.2025.08.031
① 凡本站注明“稿件來源:中國教育在線”的所有文字、圖片和音視頻稿件,版權均屬本網所有,任何媒體、網站或個人未經本網協議授權不得轉載、鏈接、轉貼或以其他方式復制發表。已經本站協議授權的媒體、網站,在下載使用時必須注明“稿件來源:中國教育在線”,違者本站將依法追究責任。
② 本站注明稿件來源為其他媒體的文/圖等稿件均為轉載稿,本站轉載出于非商業性的教育和科研之目的,并不意味著贊同其觀點或證實其內容的真實性。如轉載稿涉及版權等問題,請作者在兩周內速來電或來函聯系。




中國教育在線

